Labyrinthine clustering in a spatial rock-paper-scissors ecosystem

Stable pattern of labyrinthine clustering in spatial rock-paper-scissors game.

By Jeppe Juul, Kim Sneppen, and Joachim Mathiesen

The spatial rock-paper-scissors ecosystem, where three species interact cyclically, is a model example of how spatial structure can maintain biodiversity. We here consider such a system for a broad range of interaction rates. When one species grows very slowly, this species and its prey dominate the system by self-organizing into a labyrinthine configuration in which the third species propagates. The cluster size distributions of the two dominating species have heavy tails and the configuration is stabilized through a complex, spatial feedback loop. We introduce a new statistical measure that quantifies the amount of clustering in the spatial system by comparison with its mean field approximation. Hereby, we are able to quantitatively explain how the labyrinthine configuration slows down the dynamics and stabilizes the system.

The article can be found here.